Vala プログラミング

WebGPU プログラミング

おなが@京都先端科学大

Vulkano Two Uniforms

f:id:onagat12:20181226014007g:plain
This is a Vulkano two uniforms example, which is based on Vulkano image example.
・first uniform : (set = 0, binding = 0) uniform sampler2D
・second uniform : (set = 0, binding = 1) uniform Data

#[macro_use]
extern crate vulkano;
extern crate vulkano_shaders;
extern crate vulkano_win;
extern crate winit;
extern crate cgmath;
extern crate image;

use vulkano::buffer::{BufferUsage, CpuAccessibleBuffer};
use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState};
use vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use vulkano::device::{Device, DeviceExtensions};
use vulkano::format::Format;
use vulkano::framebuffer::{Framebuffer, FramebufferAbstract, Subpass, RenderPassAbstract};
use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions};
use vulkano::instance::{Instance, PhysicalDevice};
use vulkano::pipeline::GraphicsPipeline;
use vulkano::pipeline::viewport::Viewport;
use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode};
use vulkano::swapchain::{AcquireError, PresentMode, SurfaceTransform, Swapchain, SwapchainCreationError};
use vulkano::swapchain;
use vulkano::sync::{GpuFuture, FlushError};
use vulkano::sync;
use vulkano_win::VkSurfaceBuild;
use winit::{EventsLoop, Window, WindowBuilder, Event, WindowEvent};

use image::ImageFormat;
use std::sync::Arc;

static WINDOW_NAME: &str = "Image Test";
static WIN_WIDTH: f64 = 700.0;
static WIN_HEIGHT: f64 = 650.0;

fn main() {
    let extensions = vulkano_win::required_extensions();
    let instance = Instance::new(None, &extensions, None).unwrap();

    let physical = PhysicalDevice::enumerate(&instance).next().unwrap();
    println!("Using device: {} (type: {:?})", physical.name(), physical.ty());

    let mut events_loop = EventsLoop::new();
    let surface = WindowBuilder::new()
        .with_dimensions(winit::dpi::LogicalSize {width:WIN_WIDTH, height:WIN_HEIGHT})
        .with_title(WINDOW_NAME.to_string())
        .build_vk_surface(&events_loop, instance.clone()).unwrap();
    let window = surface.window();

    let queue_family = physical.queue_families().find(|&q|
        q.supports_graphics() && surface.is_supported(q).unwrap_or(false)
    ).unwrap();

    let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() };
    let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext,
        [(queue_family, 0.5)].iter().cloned()).unwrap();
    let queue = queues.next().unwrap();

    // initial_dimensions -> dimensions
    let mut dimensions = if let Some(dimensions) = window.get_inner_size() {
        let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
        [dimensions.0, dimensions.1]
    } else {
        return;
    };

    let (mut swapchain, images) = {
        let caps = surface.capabilities(physical).unwrap();

        let usage = caps.supported_usage_flags;
        let alpha = caps.supported_composite_alpha.iter().next().unwrap();
        let format = caps.supported_formats[0].0;

        Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format,
            dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha,
            PresentMode::Fifo, true, None).unwrap()
    };


    #[derive(Debug, Clone)]
    struct Vertex { position: [f32; 2] }
    impl_vertex!(Vertex, position);

    let vertex_buffer = CpuAccessibleBuffer::<[Vertex]>::from_iter(
        device.clone(),
        BufferUsage::all(),
        [
            Vertex { position: [-0.5, -0.5 ] },
            Vertex { position: [-0.5,  0.5 ] },
            Vertex { position: [ 0.5, -0.5 ] },
            Vertex { position: [ 0.5,  0.5 ] },
        ].iter().cloned()
    ).unwrap();

    // uniform buffer
    let uniform_buffer = vulkano::buffer::cpu_pool::CpuBufferPool::<fs::ty::Data>
        ::new(device.clone(), vulkano::buffer::BufferUsage::all());

    let vs = vs::Shader::load(device.clone()).unwrap();
    let fs = fs::Shader::load(device.clone()).unwrap();

    let render_pass = Arc::new(
        single_pass_renderpass!(device.clone(),
            attachments: {
                color: {
                    load: Clear,
                    store: Store,
                    format: swapchain.format(),
                    samples: 1,
                }
            },
            pass: {
                color: [color],
                depth_stencil: {}
            }
        ).unwrap()
    );

    let (texture, tex_future) = {
        let image = image::load_from_memory_with_format(include_bytes!("ume-300x200.png"),
            ImageFormat::PNG).unwrap().to_rgba();
        let image_data = image.into_raw().clone();

        ImmutableImage::from_iter(
            image_data.iter().cloned(),
            // note Dimensions: image dimensions
            Dimensions::Dim2d { width: 300, height: 200 },
            Format::R8G8B8A8Srgb,
            queue.clone()
        ).unwrap()
    };

    let sampler = Sampler::new(device.clone(), Filter::Linear, Filter::Linear,
        MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat,
        SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap();

    let pipeline = Arc::new(GraphicsPipeline::start()
        .vertex_input_single_buffer::<Vertex>()
        .vertex_shader(vs.main_entry_point(), ())
        .triangle_strip()
        .viewports_dynamic_scissors_irrelevant(1)
        .fragment_shader(fs.main_entry_point(), ())
        .blend_alpha_blending()
        .render_pass(Subpass::from(render_pass.clone(), 0).unwrap())
        .build(device.clone())
        .unwrap());

    let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None };
    let mut framebuffers = window_size_dependent_setup(&images, render_pass.clone(), &mut dynamic_state);

    let mut recreate_swapchain = false;
    let mut previous_frame_end = Box::new(tex_future) as Box<GpuFuture>;

    let mut mouse_pressed = false;
    let mut mouse_position = [0.5, 0.5];
    let mut center = [0.5, 0.5];

    loop {
        previous_frame_end.cleanup_finished();
        if recreate_swapchain {
            dimensions = if let Some(dimensions) = window.get_inner_size() {
                let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into();
                [dimensions.0, dimensions.1]
            } else {
                return;
            };

            let (new_swapchain, new_images) = match swapchain.recreate_with_dimension(dimensions) {
                Ok(r) => r,
                Err(SwapchainCreationError::UnsupportedDimensions) => continue,
                Err(err) => panic!("{:?}", err)
            };

            swapchain = new_swapchain;
            framebuffers = window_size_dependent_setup(&new_images, render_pass.clone(), &mut dynamic_state);

            recreate_swapchain = false;
        }

        // mouse position
        if mouse_pressed {
            //println!("position: {} {}", mouse_position[0] as u32, mouse_position[1] as u32);
            let uvx = 2.0/(dimensions[0] as f32)* mouse_position[0] - 0.5;
            let uvy = 2.0/(dimensions[1] as f32)* mouse_position[1] - 0.5;
            //println!("uv: {} {}", uvx, uvy);
            center = [uvx, uvy];
        }
        // uniform buffer
        let uniform_buffer_subbuffer = {
            let uniform_data = fs::ty::Data {
                center: center,
            };

            uniform_buffer.next(uniform_data).unwrap()
        };

        let set = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0)
            .add_sampled_image(texture.clone(), sampler.clone()).unwrap()
            .add_buffer(uniform_buffer_subbuffer).unwrap()
            .build().unwrap()
        );


        let (image_num, future) = match swapchain::acquire_next_image(swapchain.clone(), None) {
            Ok(r) => r,
            Err(AcquireError::OutOfDate) => {
                recreate_swapchain = true;
                continue;
            }
            Err(err) => panic!("{:?}", err)
        };

        let clear_values = vec!([0.0, 0.0, 0.0, 1.0].into());
        let cb = AutoCommandBufferBuilder::primary_one_time_submit(device.clone(), queue.family())
            .unwrap()
            .begin_render_pass(framebuffers[image_num].clone(), false, clear_values).unwrap()
            .draw(pipeline.clone(), &dynamic_state, vertex_buffer.clone(), set.clone(), ()).unwrap()
            .end_render_pass().unwrap()
            .build().unwrap();

        let future = previous_frame_end.join(future)
            .then_execute(queue.clone(), cb).unwrap()
            .then_swapchain_present(queue.clone(), swapchain.clone(), image_num)
            .then_signal_fence_and_flush();

        match future {
            Ok(future) => {
                previous_frame_end = Box::new(future) as Box<_>;
            }
            Err(FlushError::OutOfDate) => {
                recreate_swapchain = true;
                previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
            }
            Err(e) => {
                println!("{:?}", e);
                previous_frame_end = Box::new(sync::now(device.clone())) as Box<_>;
            }
        }

        let mut done = false;
        events_loop.poll_events(|ev| {
            match ev {
                winit::Event::WindowEvent {
                    event: winit::WindowEvent::CursorMoved { position: winit::dpi::LogicalPosition {x, y}, .. }, ..}  => {
                        mouse_position = [x as f32, y as f32];
                        //if mouse_pressed {
                        //    println!("position: {} {}", mouse_position[0] as u32, mouse_position[1] as u32);
                        //}
                },
                winit::Event::WindowEvent {
                    event: winit::WindowEvent::MouseInput { state: _state, button: _button, ..}, ..} => {
                        mouse_pressed =
                            _button == winit::MouseButton::Left && _state == winit::ElementState::Pressed;
                        if mouse_pressed {println!("Mouse {:?} {:?}", _button, _state);}
                },

                Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true,
                Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true,
                _ => ()
            }
        });
        if done { return; }
    }
}

/// This method is called once during initialization, then again whenever the window is resized
fn window_size_dependent_setup(
    images: &[Arc<SwapchainImage<Window>>],
    render_pass: Arc<RenderPassAbstract + Send + Sync>,
    dynamic_state: &mut DynamicState
) -> Vec<Arc<FramebufferAbstract + Send + Sync>> {
    let dimensions = images[0].dimensions();

    let viewport = Viewport {
        origin: [0.0, 0.0],
        dimensions: [dimensions[0] as f32, dimensions[1] as f32],
        depth_range: 0.0 .. 1.0,
    };
    dynamic_state.viewports = Some(vec!(viewport));

    images.iter().map(|image| {
        Arc::new(
            Framebuffer::start(render_pass.clone())
                .add(image.clone()).unwrap()
                .build().unwrap()
        ) as Arc<FramebufferAbstract + Send + Sync>
    }).collect::<Vec<_>>()
}

mod vs {
    vulkano_shaders::shader!{
        ty: "vertex",
        src: "
#version 450

layout(location = 0) in vec2 position;
layout(location = 0) out vec2 tex_coords;

void main() {
    gl_Position = vec4(position, 0.0, 1.0);
    tex_coords = position + vec2(0.5);
}"
    }
}

mod fs {
    vulkano_shaders::shader!{
        ty: "fragment",
        src: "
#version 450

layout(location = 0) in vec2 tex_coords;
layout(location = 0) out vec4 f_color;

layout(set = 0, binding = 0) uniform sampler2D tex;
layout(set = 0, binding = 1) uniform Data {
    vec2 center;
} uniforms;

const float refractance = 1.4;
const vec3 eyeVector = vec3(0., 0., -1.);
const float r = 0.3;

bool inCircle(vec2 position, vec2 center, float size) {
    float len = length(position - center);
    return (len < size)? true: false;
}

void main() {
    vec2 center = uniforms.center;
    vec2 new_coords = tex_coords - center;
    float length_xy = length(new_coords);
    float z = sqrt(pow(r,2) - pow(length_xy,2));
    float sin_thetai = sqrt(pow(r,2) - pow(z,2)) / r;
    float thetai = asin(sin_thetai);
    float sin_thetar = sin_thetai / refractance;
    float thetar = asin(sin_thetar);
    float lxy = z*tan(thetai - thetar);
    float deltax = lxy*new_coords.x/length_xy;
    float deltay = lxy*new_coords.y/length_xy;
    
    vec2 uv = (inCircle(tex_coords, center, r)) ? tex_coords - vec2(deltax, deltay): tex_coords;
    f_color = texture(tex, uv);
}"
    }
}