cubemapの描画
Vulkano issue #922 (Usage of CubeMap) を参考にしました。
1) The data for the buffer is the image data of six images appended to each other
in the order of: left, right, bottom, top, back, and front (at least that is the order
I have). The size of the cubemap is the width of one of the square images.
2) Say you load an image into a Vec of u8's, where each value is the color
component r, g, b, or a; or any other variant. Just append the next image's data
onto that Vec.
1 cubemap imageデータの生成
まず、次のようにして各部分の imageデータ(img_posx, img_negx, ...)を
生成します。
let img_posx = image::load_from_memory_with_format(include_bytes!("images/posx512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_negx = image::load_from_memory_with_format(include_bytes!("images/negx512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); ・・・
生成される imageデータの型は Vec<u8> になる。
次に、空の Vec<u8> データを準備し、これに posx, negx, posy, negy, posz,
negz の順に各imageデータを追加して、 cubemap 全体の imageデータ
(一つの Vec<u8> データ image_data)にする。
これから cubemap texture を生成する。
let cubemap_images = [img_posx, img_negx, img_posy, img_negy, img_posz, img_negz]; let mut image_data: Vec<u8> = Vec::new(); for image in cubemap_images.into_iter() { let mut image0 = image.clone().into_raw().clone(); image_data.append(&mut image0); }
2 cubemap texture の生成
cubemap texture の生成には、通常の texture 生成と同じ文を使用する。
ただし、from_iter()メソッドの dimensions 引数は Cubemap を設定する。
また、image_data(型は Vec<u8> )には、1で生成した cubemap imageデータを
設定する。
let (texture, tex_future) = { ImmutableImage::from_iter( image_data.iter().cloned(), Dimensions::Cubemap { size: 512 }, Format::R8G8B8A8Srgb, vk.queue.clone() ).unwrap() };
cubemap プログラム
#[macro_use] extern crate vulkano; extern crate vulkano_shaders; extern crate winit; extern crate vulkano_win; extern crate arcball; extern crate cgmath; extern crate image; use vulkano_win::VkSurfaceBuild; use vulkano::buffer::BufferUsage; use vulkano::buffer::cpu_access::CpuAccessibleBuffer; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::device::{Device, DeviceExtensions}; use vulkano::framebuffer::{Framebuffer, Subpass, FramebufferAbstract, RenderPassAbstract}; use vulkano::format::Format; use vulkano::instance::{Instance, PhysicalDevice}; use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions}; use vulkano::image::attachment::AttachmentImage; use vulkano::pipeline::{GraphicsPipeline, GraphicsPipelineAbstract}; use vulkano::pipeline::viewport::Viewport; use vulkano::swapchain; use vulkano::swapchain::{Swapchain, SurfaceTransform, PresentMode, AcquireError}; use vulkano::sync; use vulkano::sync::GpuFuture; use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode}; use winit::{Window, EventsLoop, WindowBuilder, Event, WindowEvent}; use image::ImageFormat; use std::sync::Arc; use std::iter; use std::time::Instant; use cgmath::{Matrix3, Matrix4, Rad, Point3, Vector3}; #[derive(Debug, Clone)] struct Vertex { position: [f32; 3] } impl_vertex!(Vertex, position); static WINDOW_NAME: &str = "Cubemap"; static WIN_WIDTH: f64 = 600.0; static WIN_HEIGHT: f64 = 600.0; struct Vulkan { images: Vec<std::sync::Arc<vulkano::image::SwapchainImage<winit::Window>>>, swapchain: Arc<vulkano::swapchain::Swapchain<winit::Window>>, device: Arc<vulkano::device::Device>, queue: Arc<vulkano::device::Queue>, events_loop: winit::EventsLoop, surface: Arc<vulkano::swapchain::Surface<winit::Window>>, } impl Vulkan { pub fn init_vk() -> Vulkan { let extensions = vulkano_win::required_extensions(); let instance = Instance::new(None, &extensions, None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); println!("Using device: {} (type: {:?})", physical.name(), physical.ty()); // events_loop, surface, window let events_loop = EventsLoop::new(); let surface = WindowBuilder::new() .with_dimensions(winit::dpi::LogicalSize {width:WIN_WIDTH, height:WIN_HEIGHT}) .with_title(WINDOW_NAME.to_string()) .build_vk_surface(&events_loop, instance.clone()).unwrap(); // (device, queues), queue_family let queue_family = physical.queue_families().find(|&q| { q.supports_graphics() && surface.is_supported(q).unwrap_or(false) }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); // we use only one queue, first one let queue = queues.next().unwrap(); let initial_dimensions = [WIN_WIDTH as u32, WIN_HEIGHT as u32]; let caps = surface.capabilities(physical).unwrap(); let (swapchain, images) = { let usage = caps.supported_usage_flags; let alpha = caps.supported_composite_alpha.iter().next().unwrap(); let format = caps.supported_formats[0].0; // Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format, initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; Vulkan { images, swapchain, device, queue, surface, events_loop, } } } fn main() { // Vulkan Object initialization let mut vk = Vulkan::init_vk(); let skybox_vertex_buffer = { let side2: f32 = 20.0 / 2.0; CpuAccessibleBuffer::from_iter(vk.device.clone(), BufferUsage::all(), [ // Front Vertex { position: [-side2, -side2, side2] }, Vertex { position: [ side2, -side2, side2] }, Vertex { position: [ side2, side2, side2] }, Vertex { position: [-side2, side2, side2] }, // Right Vertex { position: [ side2, -side2, side2] }, Vertex { position: [ side2, -side2, -side2] }, Vertex { position: [ side2, side2, -side2] }, Vertex { position: [ side2, side2, side2] }, // Back Vertex { position: [-side2, -side2, -side2] }, Vertex { position: [-side2, side2, -side2] }, Vertex { position: [ side2, side2, -side2] }, Vertex { position: [ side2, -side2, -side2] }, // Left Vertex { position: [-side2, -side2, side2] }, Vertex { position: [-side2, side2, side2] }, Vertex { position: [-side2, side2, -side2] }, Vertex { position: [-side2, -side2, -side2] }, // Bottom Vertex { position: [-side2, -side2, side2] }, Vertex { position: [-side2, -side2, -side2] }, Vertex { position: [ side2, -side2, -side2] }, Vertex { position: [ side2, -side2, side2] }, // Top Vertex { position: [-side2, side2, side2] }, Vertex { position: [ side2, side2, side2] }, Vertex { position: [ side2, side2, -side2] }, Vertex { position: [-side2, side2, -side2] } ].iter().cloned()).expect("failed to create buffer") }; let skybox_index_buffer = vulkano::buffer::cpu_access::CpuAccessibleBuffer ::from_iter(vk.device.clone(), vulkano::buffer::BufferUsage::all(), [ // Front 0u16, 1, 2, 2, 3, 0, // Right 4, 5, 6, 6, 7, 4, // Back 8, 9, 10, 10, 11, 8, // Left 12, 13, 14, 14, 15, 12, // Bottom 16, 17, 18, 18, 19, 16, // Top 20, 21, 22, 22, 23, 20, ].iter().cloned()).expect("failed to create buffer"); // uniform buffer let uniform_buffer = vulkano::buffer::cpu_pool::CpuBufferPool::<vs::ty::Data> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); let vs = vs::Shader::load(vk.device.clone()).expect("failed to create shader module"); let fs = fs::Shader::load(vk.device.clone()).expect("failed to create shader module"); // render pass let render_pass = Arc::new(single_pass_renderpass!(vk.device.clone(), attachments: { color: { load: Clear, store: Store, format: vk.swapchain.format(), samples: 1, }, depth: { load: Clear, store: DontCare, format: vulkano::format::Format::D16Unorm, samples: 1, } // depth }, pass: { color: [color], depth_stencil: {depth} // depth } ).unwrap()); let window = vk.surface.window(); let mut dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let img_posx = image::load_from_memory_with_format(include_bytes!("images/posx512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_negx = image::load_from_memory_with_format(include_bytes!("images/negx512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_posy = image::load_from_memory_with_format(include_bytes!("images/posy512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_negy = image::load_from_memory_with_format(include_bytes!("images/negy512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_posz = image::load_from_memory_with_format(include_bytes!("images/posz512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let img_negz = image::load_from_memory_with_format(include_bytes!("images/negz512.jpg"), ImageFormat::JPEG).unwrap().to_rgba(); let cubemap_images = [img_posx, img_negx, img_posy, img_negy, img_posz, img_negz]; let mut image_data: Vec<u8> = Vec::new(); for image in cubemap_images.into_iter() { let mut image0 = image.clone().into_raw().clone(); image_data.append(&mut image0); } let (texture, tex_future) = { ImmutableImage::from_iter( image_data.iter().cloned(), Dimensions::Cubemap { size: 512 }, Format::R8G8B8A8Srgb, vk.queue.clone() ).unwrap() }; let sampler = Sampler::new(vk.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); // pipeline and framebuffer let (mut pipeline, mut framebuffers) = window_size_dependent_setup(vk.device.clone(), &vs, &fs, &vk.images, render_pass.clone()); let mut recreate_swapchain = false; let mut previous_frame = Box::new(tex_future) as Box<GpuFuture>; let rotation_start = Instant::now(); loop { previous_frame.cleanup_finished(); if recreate_swapchain { dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = vk.swapchain.recreate_with_dimension(dimensions) .expect("swapcahain not recreate"); vk.swapchain = new_swapchain; let (new_pipeline, new_framebuffers) = window_size_dependent_setup(vk.device.clone(), &vs, &fs, &new_images, render_pass.clone()); pipeline = new_pipeline; framebuffers = new_framebuffers; recreate_swapchain = false; } let uniform_buffer_subbuffer = { let elapsed = rotation_start.elapsed(); let rotation = elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0; let rotation = Matrix3::from_angle_y(Rad(0.6 * rotation as f32)); let world = Matrix4::from(rotation); let view = Matrix4::look_at(Point3::new(0.0, 0.0, 1.0), Point3::new(0.0, 0.0, 0.0), Vector3::new(0.0, -1.0, 0.0)); let scale = Matrix4::from_scale(1.0); let aspect_ratio = dimensions[0] as f32 / dimensions[1] as f32; let proj = cgmath::perspective(Rad(std::f32::consts::FRAC_PI_2), aspect_ratio, 0.01, 100.0); let uniform_data = vs::ty::Data { world: world.into(), view : (view * scale).into(), proj : proj.into(), }; uniform_buffer.next(uniform_data).unwrap() }; let set0 = Arc::new(vulkano::descriptor::descriptor_set::PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(uniform_buffer_subbuffer).unwrap() .build().unwrap() ); let set1 = Arc::new(vulkano::descriptor::descriptor_set::PersistentDescriptorSet::start(pipeline.clone(), 1) .add_sampled_image(texture.clone(), sampler.clone()).unwrap() .build().unwrap() ); let (image_num, acquire_future) = match swapchain::acquire_next_image(vk.swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; continue; }, Err(err) => panic!("{:?}", err) }; let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(vk.device.clone(), vk.queue.family()).unwrap() // Ok .begin_render_pass(framebuffers[image_num].clone(), false, vec![[0.1, 0.1, 0.1, 1.0].into(), 1f32.into()]).unwrap() .draw_indexed(pipeline.clone(), &DynamicState::none(), vec!(skybox_vertex_buffer.clone()), skybox_index_buffer.clone(), (set0.clone(), set1.clone()), ()).unwrap() .end_render_pass().unwrap() .build().unwrap(); let _future = previous_frame.join(acquire_future) .then_execute(vk.queue.clone(), command_buffer).unwrap() .then_swapchain_present(vk.queue.clone(), vk.swapchain.clone(), image_num) .then_signal_fence_and_flush(); previous_frame = Box::new(sync::now(vk.device.clone())) as Box<_>; let mut done = false; vk.events_loop.poll_events(|ev| { match ev { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => done = true, Event::WindowEvent { event: WindowEvent::Resized(_), .. } => recreate_swapchain = true, _ => () } }); if done { return; } } } fn window_size_dependent_setup( device: Arc<Device>, vs: &vs::Shader, fs: &fs::Shader, images: &[Arc<SwapchainImage<Window>>], render_pass: Arc<RenderPassAbstract + Send + Sync>, ) -> (Arc<GraphicsPipelineAbstract + Send + Sync>, Vec<Arc<FramebufferAbstract + Send + Sync>> ) { let dimensions = images[0].dimensions(); let depth_buffer = AttachmentImage::transient(device.clone(), dimensions, Format::D16Unorm).unwrap(); let framebuffers = images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .add(depth_buffer.clone()).unwrap() .build().unwrap() ) as Arc<FramebufferAbstract + Send + Sync> }).collect::<Vec<_>>(); let pipeline = Arc::new(GraphicsPipeline::start() .vertex_input_single_buffer::<Vertex>() .vertex_shader(vs.main_entry_point(), ()) .triangle_list() .viewports_dynamic_scissors_irrelevant(1) .viewports(iter::once(Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0 .. 1.0, })) .fragment_shader(fs.main_entry_point(), ()) .depth_stencil_simple_depth() .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .build(device.clone()) .unwrap()); (pipeline, framebuffers) } mod vs { vulkano_shaders::shader!{ ty: "vertex", src: " #version 450 layout(location = 0) in vec3 position; layout (location = 0) out vec3 ReflectDir; layout(set = 0, binding = 0) uniform Data { mat4 world; mat4 view; mat4 proj; } ubo; void main() { ReflectDir = position; gl_Position = ubo.proj * ubo.view * ubo.world * vec4(position, 1.0); }" } } mod fs { vulkano_shaders::shader!{ ty: "fragment", src: " #version 450 layout(location = 0) in vec3 ReflectDir; layout(location = 0) out vec4 f_color; layout(set = 1, binding = 0) uniform samplerCube cubetex; void main() { f_color = texture(cubetex, ReflectDir); }" } }
2019-2-7 update