2つのオブジェクト(Two Objects)の描画方法
オブジェクト1(obj-1):キューブ(cube)
オブジェクト2(obj-2):床と壁(floor and Walls)
1 Vertex buffer と Index buffer
Vertex buffer と Index buffer はそれぞれのオブジェクトについて準備します。
オブジェクト1: vertex_buffer1, index_buffer1
オブジェクト2: vertex_buffer2, index_buffer2
2 shader と pipeline
・shader
2つのオブジェクトで同じvertex shader と fragmant shader を使用します。
vertex shader と fragment shader は、David Wolff「OpenGL 4.0
シェーディング言語 ( OpenGL 4.0 Shading Language Cookbook )」を
参考にしています。(オブジェクトの描画には、phongモデルを使用して
います。)
・pipeline
2つのオブジェクトで同じvertex shader と fragmant shader を使うので、
pipelineは一つだけになります。
3 uniform buffer
・shader内 uniform の記述
vertex shader layout(set = 0, binding = 0) uniform MVP { mat4 view; mat4 mvp; } mvp; fragment shader layout(set = 1, binding = 0) uniform Material { vec3 kd; float shininess; vec3 ks; float shininess2; // dummy vec3 ka; } material; 注)変数を上記のような順番にし、さらにdummy変数を追加しないとビルドできません。 layout(set = 1, binding = 1) uniform Light { vec4 position; vec3 intensity; } light;
これらに対応した uniform buffer を生成します。
let ubo_mvp = vulkano::buffer::cpu_pool::CpuBufferPool::<vs::ty::MVP> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); let ubo_material = vulkano::buffer::cpu_pool::CpuBufferPool::<fs::ty::Material> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); let ubo_light = vulkano::buffer::cpu_pool::CpuBufferPool::<fs::ty::Light> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all());
・uniform データの設定
// uniform_buffer // mvp obj-1 and obj-2 let ubo_mvp_subbuffer = { let uniform_data = vs::ty::MVP { view : view.into(), mvp : mvp.into(), }; ubo_mvp.next(uniform_data).unwrap() }; // material obj-1 let ubo_material1_subbuffer = { let uniform_data = fs::ty::Material { kd : [0.5, 0.2, 0.1], shininess : 100.0, ks : [0.95, 0.95, 0.95], shininess2 : 100.0, // dummy ka : [0.1, 0.1, 0.1], }; ubo_material.next(uniform_data).unwrap() }; // material obj-2 let ubo_material2_subbuffer = { let uniform_data = fs::ty::Material { kd : [0.4, 0.4, 0.4], shininess : 1.0, ks : [0.0, 0.0, 0.0], shininess2 : 1.0, // dummy ka : [0.1, 0.1, 0.1], }; ubo_material.next(uniform_data).unwrap() }; // light obj-1 and obj-2 let ubo_light_subbuffer = { let uniform_data = fs::ty::Light { position : [0.0, 0.0, 0.0, 1.0], intensity : [1.0, 1.0, 1.0], }; ubo_light.next(uniform_data).unwrap() };
・DescriptorSet
DescriptorSetの記述は以下のようにします。
obj-1の設定
vertex shaderの
layout(set = 0, binding = 0) uniform MVP
に対応させて、
let set10 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(ubo_mvp_subbuffer.clone()).unwrap() .build().unwrap() );
と記述する。
fragment shaderの
layout(set = 1, binding = 0) uniform Material
layout(set = 1, binding = 1) uniform Light
に対応させて、
let set11 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 1) .add_buffer(ubo_material1_subbuffer).unwrap() .add_buffer(ubo_light_subbuffer.clone()).unwrap() .build().unwrap() );
と記述する。
obj-2も同様に記述する。
4 2つのオブジェクトの描画
command buffer における draw コマンドは次のように記述する。
// draw obj-2: first draw .draw_indexed(pipeline.clone(), &dynamic_state, vertex_buffer2.clone(), index_buffer2.clone(), (set20.clone(), set21.clone()), ()).unwrap() // draw obj-1: second draw .draw_indexed(pipeline.clone(), &dynamic_state, vertex_buffer1.clone(), index_buffer1.clone(), (set10.clone(), set11.clone()), ()).unwrap()
プログラム
#[macro_use] extern crate vulkano; extern crate vulkano_shaders; extern crate winit; extern crate vulkano_win; extern crate arcball; extern crate cgmath; extern crate image; use vulkano_win::VkSurfaceBuild; use vulkano::buffer::BufferUsage; use vulkano::buffer::cpu_access::CpuAccessibleBuffer; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::device::{Device, DeviceExtensions}; use vulkano::framebuffer::{Framebuffer, Subpass, FramebufferAbstract, RenderPassAbstract}; use vulkano::format::Format; use vulkano::instance::{Instance, PhysicalDevice}; use vulkano::image::SwapchainImage; use vulkano::image::attachment::AttachmentImage; use vulkano::pipeline::GraphicsPipeline; use vulkano::pipeline::viewport::Viewport; use vulkano::swapchain; use vulkano::swapchain::{Swapchain, PresentMode, SurfaceTransform, AcquireError, SwapchainCreationError}; use vulkano::sync; use vulkano::sync::now; use vulkano::sync::GpuFuture; use vulkano::descriptor::descriptor_set::PersistentDescriptorSet; use winit::{Window, EventsLoop, WindowBuilder}; use std::sync::Arc; static WINDOW_NAME: &str = "Tow Objects"; static WIN_WIDTH: f64 = 700.0; static WIN_HEIGHT: f64 = 650.0; struct Vulkan { images: Vec<std::sync::Arc<vulkano::image::SwapchainImage<winit::Window>>>, swapchain: Arc<vulkano::swapchain::Swapchain<winit::Window>>, device: Arc<vulkano::device::Device>, queue: Arc<vulkano::device::Queue>, events_loop: winit::EventsLoop, surface: Arc<vulkano::swapchain::Surface<winit::Window>>, } impl Vulkan { pub fn init_vk() -> Vulkan { let extensions = vulkano_win::required_extensions(); let instance = Instance::new(None, &extensions, None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); println!("Using device: {} (type: {:?})", physical.name(), physical.ty()); // events_loop, surface, window let events_loop = EventsLoop::new(); let surface = WindowBuilder::new() .with_dimensions(winit::dpi::LogicalSize {width:WIN_WIDTH, height:WIN_HEIGHT}) .with_title(WINDOW_NAME.to_string()) .build_vk_surface(&events_loop, instance.clone()).unwrap(); // (device, queues), queue_family let queue_family = physical.queue_families().find(|&q| { q.supports_graphics() && surface.is_supported(q).unwrap_or(false) }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); // first queue let queue = queues.next().unwrap(); let initial_dimensions = [WIN_WIDTH as u32, WIN_HEIGHT as u32]; let caps = surface.capabilities(physical).unwrap(); let (swapchain, images) = { let usage = caps.supported_usage_flags; let alpha = caps.supported_composite_alpha.iter().next().unwrap(); let format = caps.supported_formats[1].0; // formats[1] // Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format, initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; Vulkan { images, swapchain, device, queue, surface, events_loop, } } } fn main() { let mut vk = Vulkan::init_vk(); #[derive(Debug, Clone)] struct Vertex { position: [f32; 3], normal: [f32; 3] } impl_vertex!(Vertex, position, normal); // obj-1 let vertex_buffer1 = { let side2: f32 = 0.5 / 2.0; CpuAccessibleBuffer::from_iter(vk.device.clone(), BufferUsage::all(), [ // Front Vertex { position: [-side2, -side2, side2], normal: [0.0, 0.0, 1.0] }, Vertex { position: [ side2, -side2, side2], normal: [0.0, 0.0, 1.0] }, Vertex { position: [ side2, side2, side2], normal: [0.0, 0.0, 1.0] }, Vertex { position: [-side2, side2, side2], normal: [0.0, 0.0, 1.0] }, // Right Vertex { position: [ side2, -side2, side2], normal: [1.0, 0.0, 0.0] }, Vertex { position: [ side2, -side2, -side2], normal: [1.0, 0.0, 0.0] }, Vertex { position: [ side2, side2, -side2], normal: [1.0, 0.0, 0.0] }, Vertex { position: [ side2, side2, side2], normal: [1.0, 0.0, 0.0] }, // Back Vertex { position: [-side2, -side2, -side2], normal: [0.0, 0.0, -1.0] }, Vertex { position: [-side2, side2, -side2], normal: [0.0, 0.0, -1.0] }, Vertex { position: [ side2, side2, -side2], normal: [0.0, 0.0, -1.0] }, Vertex { position: [ side2, -side2, -side2], normal: [0.0, 0.0, -1.0] }, // Left Vertex { position: [-side2, -side2, side2], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [-side2, side2, side2], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [-side2, side2, -side2], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [-side2, -side2, -side2], normal: [-1.0, 0.0, 0.0] }, // Bottom Vertex { position: [-side2, -side2, side2], normal: [0.0, -1.0, 0.0] }, Vertex { position: [-side2, -side2, -side2], normal: [0.0, -1.0, 0.0] }, Vertex { position: [ side2, -side2, -side2], normal: [0.0, -1.0, 0.0] }, Vertex { position: [ side2, -side2, side2], normal: [0.0, -1.0, 0.0] }, // Top Vertex { position: [-side2, side2, side2], normal: [0.0, 1.0, 0.0] }, Vertex { position: [ side2, side2, side2], normal: [0.0, 1.0, 0.0] }, Vertex { position: [ side2, side2, -side2], normal: [0.0, 1.0, 0.0] }, Vertex { position: [-side2, side2, -side2], normal: [0.0, 1.0, 0.0] } ].iter().cloned()).expect("failed to create buffer") }; let index_buffer1 = vulkano::buffer::cpu_access::CpuAccessibleBuffer::from_iter( vk.device.clone(), vulkano::buffer::BufferUsage::all(), [ // Front 0u16, 1, 2, 2, 3, 0, // Right 4, 5, 6, 6, 7, 4, // Back 8, 9, 10, 10, 11, 8, // Left 12, 13, 14, 14, 15, 12, // Bottom 16, 17, 18, 18, 19, 16, // Top 20, 21, 22, 22, 23, 20, ].iter().cloned()).expect("failed to create buffer"); // obj-2 let vertex_buffer2 = { CpuAccessibleBuffer::from_iter(vk.device.clone(), BufferUsage::all(), [ Vertex { position: [-0.5, -0.5, 0.5], normal: [ 0.0, 1.0, 0.0] }, Vertex { position: [ 0.5, -0.5, 0.5], normal: [ 0.0, 1.0, 0.0] }, Vertex { position: [ 0.5, -0.5, -0.5], normal: [ 0.0, 1.0, 0.0] }, Vertex { position: [-0.5, -0.5, -0.5], normal: [ 0.0, 1.0, 0.0] }, // Vertex { position: [ 0.5, -0.5, 0.5], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [ 0.5, 0.5, 0.5], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [ 0.5, 0.5, -0.5], normal: [-1.0, 0.0, 0.0] }, Vertex { position: [ 0.5, -0.5, -0.5], normal: [-1.0, 0.0, 0.0] }, // Vertex { position: [-0.5, -0.5, -0.5], normal: [ 0.0, 0.0, 1.0] }, Vertex { position: [ 0.5, -0.5, -0.5], normal: [ 0.0, 0.0, 1.0] }, Vertex { position: [ 0.5, 0.5, -0.5], normal: [ 0.0, 0.0, 1.0] }, Vertex { position: [-0.5, 0.5, -0.5], normal: [ 0.0, 0.0, 1.0] }, ].iter().cloned()).expect("failed to create buffer") }; let index_buffer2 = vulkano::buffer::cpu_access::CpuAccessibleBuffer::from_iter( vk.device.clone(), vulkano::buffer::BufferUsage::all(), [ 0u16, 1, 2, 2, 3, 0, 4, 5, 6, 6, 7, 4, 8, 9, 10, 10, 11, 8 ].iter().cloned()).expect("failed to create buffer"); let ubo_mvp = vulkano::buffer::cpu_pool::CpuBufferPool::<vs::ty::MVP> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); // let ubo_material = vulkano::buffer::cpu_pool::CpuBufferPool::<fs::ty::Material> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); // let ubo_light = vulkano::buffer::cpu_pool::CpuBufferPool::<fs::ty::Light> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); let vs = vs::Shader::load(vk.device.clone()).expect("failed to create shader module"); let fs = fs::Shader::load(vk.device.clone()).expect("failed to create shader module"); // render pass let render_pass = Arc::new(single_pass_renderpass!(vk.device.clone(), attachments: { color: { load: Clear, store: Store, format: vk.swapchain.format(), samples: 1, }, depth: { load: Clear, store: DontCare, format: vulkano::format::Format::D16Unorm, samples: 1, } // depth }, pass: { color: [color], depth_stencil: {depth} // depth } ).unwrap()); let window = vk.surface.window(); let mut dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; // framebuffer(use dynamic_state viewport) let mut dynamic_state = DynamicState { line_width: None, viewports: None, scissors: None }; let mut framebuffers = window_size_dependent_setup(vk.device.clone(), &vk.images, render_pass.clone(), &mut dynamic_state); // pipeliner(use dynamic_state viewport) let pipeline = Arc::new(GraphicsPipeline::start() .vertex_input_single_buffer() .vertex_shader(vs.main_entry_point(), ()) .triangle_list() .viewports_dynamic_scissors_irrelevant(1) .fragment_shader(fs.main_entry_point(), ()) .depth_stencil_simple_depth() .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .build(vk.device.clone()) .unwrap()); let mut recreate_swapchain = false; let mut previous_frame = Box::new(now(vk.device.clone())) as Box<GpuFuture>; let persp_proj:cgmath::Matrix4<f32> = cgmath::perspective(cgmath::Deg(65.0), dimensions[0] as f32 / dimensions[1] as f32, 0.01, 100.0); let mut arcball_camera = { let look_at = cgmath::Matrix4::look_at(cgmath::Point3::new(0.0, 0.0, 2.0), cgmath::Point3::new(0.0, 0.0, 0.0), cgmath::Vector3::new(0.0, 1.0, 0.0)); arcball::ArcballCamera::new(&look_at, 0.05, 4.0, [dimensions[0] as f32, dimensions[1] as f32]) }; // let mut arcball_camera_mat4: [[f32;4];4] = arcball_camera.get_mat4().into(); let mut mouse_pressed = [false, false]; let mut prev_mouse: Option<(f64,f64)> = None; loop { previous_frame.cleanup_finished(); if recreate_swapchain { dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = match vk.swapchain.recreate_with_dimension(dimensions) { Ok(r) => r, Err(SwapchainCreationError::UnsupportedDimensions) => continue, Err(err) => panic!("{:?}", err) }; vk.swapchain = new_swapchain; framebuffers = window_size_dependent_setup(vk.device.clone(), &new_images, render_pass.clone(), &mut dynamic_state); recreate_swapchain = false; } let view = arcball_camera.get_mat4(); let mvp = persp_proj * view; // uniform_buffer // mvp obj-1 and obj-2 let ubo_mvp_subbuffer = { let uniform_data = vs::ty::MVP { view : view.into(), mvp : mvp.into(), }; ubo_mvp.next(uniform_data).unwrap() }; // material obj-1 let ubo_material1_subbuffer = { let uniform_data = fs::ty::Material { kd : [0.5, 0.2, 0.1], shininess : 100.0, ks : [0.95, 0.95, 0.95], shininess2 : 100.0, // dummy ka : [0.1, 0.1, 0.1], }; ubo_material.next(uniform_data).unwrap() }; // material obj-2 let ubo_material2_subbuffer = { let uniform_data = fs::ty::Material { kd : [0.4, 0.4, 0.4], shininess : 1.0, ks : [0.0, 0.0, 0.0], shininess2 : 1.0, // dummy ka : [0.1, 0.1, 0.1], }; ubo_material.next(uniform_data).unwrap() }; // light obj-1 and obj-2 let ubo_light_subbuffer = { let uniform_data = fs::ty::Light { position : [0.0, 0.0, 0.0, 1.0], intensity : [1.0, 1.0, 1.0], }; ubo_light.next(uniform_data).unwrap() }; // uniform set // obj-1 set10, set11 let set10 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(ubo_mvp_subbuffer.clone()).unwrap() .build().unwrap() ); let set11 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 1) .add_buffer(ubo_material1_subbuffer).unwrap() .add_buffer(ubo_light_subbuffer.clone()).unwrap() .build().unwrap() ); // obj-2 set20, set21 let set20 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(ubo_mvp_subbuffer).unwrap() .build().unwrap() ); let set21 = Arc::new(PersistentDescriptorSet::start(pipeline.clone(), 1) .add_buffer(ubo_material2_subbuffer).unwrap() .add_buffer(ubo_light_subbuffer.clone()).unwrap() .build().unwrap() ); let (image_num, acquire_future) = match swapchain::acquire_next_image(vk.swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; continue; }, Err(err) => panic!("{:?}", err) }; let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(vk.device.clone(), vk.queue.family()).unwrap() // Ok .begin_render_pass(framebuffers[image_num].clone(), false, vec![[0.2, 0.2, 0.3, 1.0].into(), 1f32.into()]).unwrap() // draw obj-2: first draw .draw_indexed(pipeline.clone(), &dynamic_state, vertex_buffer2.clone(), index_buffer2.clone(), (set20.clone(), set21.clone()), ()).unwrap() // draw obj-1: second draw .draw_indexed(pipeline.clone(), &dynamic_state, vertex_buffer1.clone(), index_buffer1.clone(), (set10.clone(), set11.clone()), ()).unwrap() .end_render_pass().unwrap() .build().unwrap(); let future = previous_frame.join(acquire_future) .then_execute(vk.queue.clone(), command_buffer).unwrap() .then_swapchain_present(vk.queue.clone(), vk.swapchain.clone(), image_num) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame = Box::new(future) as Box<_>; } Err(sync::FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame = Box::new(sync::now(vk.device.clone())) as Box<_>; } Err(e) => { println!("{:?}", e); previous_frame = Box::new(sync::now(vk.device.clone())) as Box<_>; } } let mut done = false; vk.events_loop.poll_events(|ev| { match ev { winit::Event::WindowEvent { event: winit::WindowEvent::CursorMoved { position: winit::dpi::LogicalPosition {x, y}, ..}, ..} if prev_mouse.is_none() => { prev_mouse = Some((x, y)); }, winit::Event::WindowEvent { event: winit::WindowEvent::CursorMoved { position: winit::dpi::LogicalPosition {x, y}, .. }, ..} => { //println!("MouseMoved {},{}", x, y); let prev = prev_mouse.unwrap(); if mouse_pressed[0] { arcball_camera.rotate(cgmath::Vector2::new(prev.0 as f32, prev.1 as f32), cgmath::Vector2::new(x as f32, y as f32)); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("rotate mat4: {:?}", arcball_camera_mat4); } else if mouse_pressed[1] { let mouse_delta = cgmath::Vector2::new((x - prev.0) as f32, -(y - prev.1) as f32); arcball_camera.pan(mouse_delta, 0.16); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("pan mat4: {:?}", arcball_camera_mat4); } prev_mouse = Some((x, y)); }, winit::Event::WindowEvent { event: winit::WindowEvent::MouseInput { state: _state, button: _button, ..}, ..} => { //println!("button {:?}", _button); if _button == winit::MouseButton::Left { mouse_pressed[0] = _state == winit::ElementState::Pressed; } else if _button == winit::MouseButton::Right { mouse_pressed[1] = _state == winit::ElementState::Pressed; } }, winit::Event::WindowEvent { event: winit::WindowEvent::MouseWheel { delta: winit::MouseScrollDelta::LineDelta(_, y), .. }, ..} => { //println!("ScrollDelta {}", y); arcball_camera.zoom(y, 0.1); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("zoom mat4: {:?}", arcball_camera_mat4); }, winit::Event::WindowEvent { event: winit::WindowEvent::CloseRequested, .. } => done = true, _ => () } }); if done { return; } } } fn window_size_dependent_setup( device: Arc<Device>, images: &[Arc<SwapchainImage<Window>>], render_pass: Arc<RenderPassAbstract + Send + Sync>, dynamic_state: &mut DynamicState ) -> Vec<Arc<FramebufferAbstract + Send + Sync>> { let dimensions = images[0].dimensions(); // dynamic viewport let viewport = Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0 .. 1.0, }; dynamic_state.viewports = Some(vec!(viewport)); let depth_buffer = AttachmentImage::transient(device.clone(), dimensions, Format::D16Unorm).unwrap(); images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .add(depth_buffer.clone()).unwrap() .build().unwrap() ) as Arc<FramebufferAbstract + Send + Sync> }).collect::<Vec<_>>() } mod vs { vulkano_shaders::shader!{ ty: "vertex", src: " #version 450 layout(location = 0) in vec3 position; layout(location = 1) in vec3 normal; layout(location = 0) out vec4 EyePosition; layout(location = 1) out vec3 EyeNormal; layout(set = 0, binding = 0) uniform MVP { mat4 view; mat4 mvp; } mvp; void main() { vec4 pos4 = vec4(position, 1.0); EyeNormal = normalize((mvp.view * vec4(normal,0)).xyz); EyePosition = mvp.view * pos4; gl_Position = mvp.mvp * vec4(position, 1.0); }" } } // mod fs { vulkano_shaders::shader!{ ty: "fragment", src: " #version 450 layout(location = 0) in vec4 EyePosition; layout(location = 1) in vec3 EyeNormal; layout(location = 0) out vec4 f_color; layout(set = 1, binding = 0) uniform Material { vec3 kd; float shininess; vec3 ks; float shininess2; // dummy vec3 ka; } material; layout(set = 1, binding = 1) uniform Light { vec4 position; vec3 intensity; } light; vec3 phongModel( vec3 pos, vec3 norm ) { vec3 s = normalize(vec3(light.position) - pos); vec3 v = normalize(-pos.xyz); vec3 r = reflect( -s, norm ); vec3 ambient = light.intensity * material.ka; float sDotN = max( dot(s,norm), 0.0 ); vec3 diffuse = light.intensity * material.kd * sDotN; vec3 spec = vec3(0.0); if( sDotN > 0.0 ) spec = light.intensity * material.ks * pow( max( dot(r,v), 0.0 ), material.shininess ); return ambient + diffuse + spec; } void main() { vec3 color = phongModel(vec3(EyePosition), EyeNormal); f_color = vec4(color, 1.0); }" } }