#[macro_use] extern crate vulkano; extern crate vulkano_shaders; extern crate winit; extern crate vulkano_win; extern crate arcball; extern crate cgmath; extern crate image; use vulkano_win::VkSurfaceBuild; use vulkano::buffer::BufferUsage; use vulkano::buffer::cpu_access::CpuAccessibleBuffer; use vulkano::command_buffer::{AutoCommandBufferBuilder, DynamicState}; use vulkano::device::{Device, DeviceExtensions}; use vulkano::framebuffer::{Framebuffer, Subpass, FramebufferAbstract, RenderPassAbstract}; use vulkano::format::Format; use vulkano::instance::{Instance, PhysicalDevice}; use vulkano::image::{SwapchainImage, ImmutableImage, Dimensions}; use vulkano::image::attachment::AttachmentImage; use vulkano::pipeline::{GraphicsPipeline, GraphicsPipelineAbstract}; use vulkano::pipeline::viewport::Viewport; use vulkano::swapchain; use vulkano::swapchain::{Swapchain, SurfaceTransform, PresentMode, AcquireError}; use vulkano::sync; use vulkano::sync::GpuFuture; use vulkano::sampler::{Sampler, SamplerAddressMode, Filter, MipmapMode}; use winit::{Window, EventsLoop, WindowBuilder}; use image::ImageFormat; use std::sync::Arc; use std::iter; #[derive(Debug, Clone)] struct Vertex { position: [f32; 3], tex_coords: [f32; 2]} impl_vertex!(Vertex, position, tex_coords); static WINDOW_NAME: &str = "Cube Texture Test"; static WIN_WIDTH: f64 = 700.0; static WIN_HEIGHT: f64 = 650.0; struct Vulkan { images: Vec<std::sync::Arc<vulkano::image::SwapchainImage<winit::Window>>>, swapchain: Arc<vulkano::swapchain::Swapchain<winit::Window>>, device: Arc<vulkano::device::Device>, queue: Arc<vulkano::device::Queue>, events_loop: winit::EventsLoop, surface: Arc<vulkano::swapchain::Surface<winit::Window>>, } impl Vulkan { pub fn init_vk() -> Vulkan { let extensions = vulkano_win::required_extensions(); let instance = Instance::new(None, &extensions, None).unwrap(); let physical = PhysicalDevice::enumerate(&instance).next().unwrap(); println!("Using device: {} (type: {:?})", physical.name(), physical.ty()); // events_loop, surface, window let events_loop = EventsLoop::new(); let surface = WindowBuilder::new() .with_dimensions(winit::dpi::LogicalSize {width:WIN_WIDTH, height:WIN_HEIGHT}) .with_title(WINDOW_NAME.to_string()) .build_vk_surface(&events_loop, instance.clone()).unwrap(); // (device, queues), queue_family let queue_family = physical.queue_families().find(|&q| { q.supports_graphics() && surface.is_supported(q).unwrap_or(false) }).unwrap(); let device_ext = DeviceExtensions { khr_swapchain: true, .. DeviceExtensions::none() }; let (device, mut queues) = Device::new(physical, physical.supported_features(), &device_ext, [(queue_family, 0.5)].iter().cloned()).unwrap(); // we use only one queue, first one let queue = queues.next().unwrap(); let initial_dimensions = [WIN_WIDTH as u32, WIN_HEIGHT as u32]; let caps = surface.capabilities(physical).unwrap(); let (swapchain, images) = { let usage = caps.supported_usage_flags; let alpha = caps.supported_composite_alpha.iter().next().unwrap(); let format = caps.supported_formats[0].0; // Swapchain::new(device.clone(), surface.clone(), caps.min_image_count, format, initial_dimensions, 1, usage, &queue, SurfaceTransform::Identity, alpha, PresentMode::Fifo, true, None).unwrap() }; Vulkan { images, swapchain, device, queue, surface, events_loop, } } } fn main() { // Vulkan Object initialization let mut vk = Vulkan::init_vk(); let vertex_buffer = { let side2: f32 = 0.8 / 2.0; CpuAccessibleBuffer::from_iter(vk.device.clone(), BufferUsage::all(), [ // Front Vertex { position: [-side2, -side2, side2], tex_coords: [0.0, 0.0] }, Vertex { position: [ side2, -side2, side2], tex_coords: [1.0, 0.0] }, Vertex { position: [ side2, side2, side2], tex_coords: [1.0, 1.0] }, Vertex { position: [-side2, side2, side2], tex_coords: [0.0, 1.0] }, // Right Vertex { position: [ side2, -side2, side2], tex_coords: [0.0, 0.0] }, Vertex { position: [ side2, -side2, -side2], tex_coords: [1.0, 0.0] }, Vertex { position: [ side2, side2, -side2], tex_coords: [1.0, 1.0] }, Vertex { position: [ side2, side2, side2], tex_coords: [0.0, 1.0] }, // Back Vertex { position: [-side2, -side2, -side2], tex_coords: [0.0, 0.0] }, Vertex { position: [-side2, side2, -side2], tex_coords: [1.0, 0.0] }, Vertex { position: [ side2, side2, -side2], tex_coords: [1.0, 1.0] }, Vertex { position: [ side2, -side2, -side2], tex_coords: [0.0, 1.0] }, // Left Vertex { position: [-side2, -side2, side2], tex_coords: [0.0, 0.0] }, Vertex { position: [-side2, side2, side2], tex_coords: [1.0, 0.0] }, Vertex { position: [-side2, side2, -side2], tex_coords: [1.0, 1.0] }, Vertex { position: [-side2, -side2, -side2], tex_coords: [0.0, 1.0] }, // Bottom Vertex { position: [-side2, -side2, side2], tex_coords: [0.0, 0.0] }, Vertex { position: [-side2, -side2, -side2], tex_coords: [1.0, 0.0] }, Vertex { position: [ side2, -side2, -side2], tex_coords: [1.0, 1.0] }, Vertex { position: [ side2, -side2, side2], tex_coords: [0.0, 1.0] }, // Top Vertex { position: [-side2, side2, side2], tex_coords: [0.0, 0.0] }, Vertex { position: [ side2, side2, side2], tex_coords: [1.0, 0.0] }, Vertex { position: [ side2, side2, -side2], tex_coords: [1.0, 1.0] }, Vertex { position: [-side2, side2, -side2], tex_coords: [0.0, 1.0] } ].iter().cloned()).expect("failed to create buffer") }; let index_buffer = vulkano::buffer::cpu_access::CpuAccessibleBuffer ::from_iter(vk.device.clone(), vulkano::buffer::BufferUsage::all(), [ // Front 0u16, 1, 2, 2, 3, 0, // Right 4, 5, 6, 6, 7, 4, // Back 8, 9, 10, 10, 11, 8, // Left 12, 13, 14, 14, 15, 12, // Bottom 16, 17, 18, 18, 19, 16, // Top 20, 21, 22, 22, 23, 20, ].iter().cloned()).expect("failed to create buffer"); // uniform buffer let uniform_buffer = vulkano::buffer::cpu_pool::CpuBufferPool::<vs::ty::Data> ::new(vk.device.clone(), vulkano::buffer::BufferUsage::all()); let vs = vs::Shader::load(vk.device.clone()).expect("failed to create shader module"); let fs = fs::Shader::load(vk.device.clone()).expect("failed to create shader module"); // render pass let render_pass = Arc::new(single_pass_renderpass!(vk.device.clone(), attachments: { color: { load: Clear, store: Store, format: vk.swapchain.format(), samples: 1, }, depth: { load: Clear, store: DontCare, format: vulkano::format::Format::D16Unorm, samples: 1, } // depth }, pass: { color: [color], depth_stencil: {depth} // depth } ).unwrap()); let window = vk.surface.window(); let mut dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (texture, tex_future) = { let image = image::load_from_memory_with_format(include_bytes!("ume-300x200.png"), ImageFormat::PNG).unwrap().to_rgba(); let image_data = image.into_raw().clone(); ImmutableImage::from_iter( image_data.iter().cloned(), Dimensions::Dim2d { width: 300, height: 200 }, Format::R8G8B8A8Srgb, vk.queue.clone() ).unwrap() }; let sampler = Sampler::new(vk.device.clone(), Filter::Linear, Filter::Linear, MipmapMode::Nearest, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, SamplerAddressMode::Repeat, 0.0, 1.0, 0.0, 0.0).unwrap(); // pipeline and framebuffer let (mut pipeline, mut framebuffers) = window_size_dependent_setup(vk.device.clone(), &vs, &fs, &vk.images, render_pass.clone()); let mut recreate_swapchain = false; let mut previous_frame = Box::new(tex_future) as Box<GpuFuture>; let persp_proj:cgmath::Matrix4<f32> = cgmath::perspective(cgmath::Deg(65.0), dimensions[0] as f32 / dimensions[1] as f32, 0.01, 100.0); let mut arcball_camera = { let look_at = cgmath::Matrix4::look_at(cgmath::Point3::new(0.0, 0.0, 2.0), cgmath::Point3::new(0.0, 0.0, 0.0), cgmath::Vector3::new(0.0, 1.0, 0.0)); arcball::ArcballCamera::new(&look_at, 0.05, 4.0, [dimensions[0] as f32, dimensions[1] as f32]) }; // let mut arcball_camera_mat4: [[f32;4];4] = arcball_camera.get_mat4().into(); let mut mouse_pressed = [false, false]; let mut prev_mouse: Option<(f64,f64)> = None; loop { previous_frame.cleanup_finished(); if recreate_swapchain { dimensions = if let Some(dimensions) = window.get_inner_size() { let dimensions: (u32, u32) = dimensions.to_physical(window.get_hidpi_factor()).into(); [dimensions.0, dimensions.1] } else { return; }; let (new_swapchain, new_images) = vk.swapchain.recreate_with_dimension(dimensions) .expect("swapcahain not recreate"); vk.swapchain = new_swapchain; let (new_pipeline, new_framebuffers) = window_size_dependent_setup(vk.device.clone(), &vs, &fs, &new_images, render_pass.clone()); pipeline = new_pipeline; framebuffers = new_framebuffers; recreate_swapchain = false; } let proj = (persp_proj * arcball_camera.get_mat4()).into(); let uniform_buffer_subbuffer = { let uniform_data = vs::ty::Data { proj : proj, }; uniform_buffer.next(uniform_data).unwrap() }; let set0 = Arc::new(vulkano::descriptor::descriptor_set::PersistentDescriptorSet::start(pipeline.clone(), 0) .add_buffer(uniform_buffer_subbuffer).unwrap() .build().unwrap() ); let set1 = Arc::new(vulkano::descriptor::descriptor_set::PersistentDescriptorSet::start(pipeline.clone(), 1) .add_sampled_image(texture.clone(), sampler.clone()).unwrap() .build().unwrap() ); let (image_num, acquire_future) = match swapchain::acquire_next_image(vk.swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; continue; }, Err(err) => panic!("{:?}", err) }; let command_buffer = AutoCommandBufferBuilder::primary_one_time_submit(vk.device.clone(), vk.queue.family()).unwrap() // Ok .begin_render_pass(framebuffers[image_num].clone(), false, vec![[0.1, 0.1, 0.1, 1.0].into(), 1f32.into()]).unwrap() .draw_indexed(pipeline.clone(), &DynamicState::none(), vec!(vertex_buffer.clone()), index_buffer.clone(), (set0.clone(), set1.clone()), ()).unwrap() .end_render_pass().unwrap() .build().unwrap(); let _future = previous_frame.join(acquire_future) .then_execute(vk.queue.clone(), command_buffer).unwrap() .then_swapchain_present(vk.queue.clone(), vk.swapchain.clone(), image_num) .then_signal_fence_and_flush(); previous_frame = Box::new(sync::now(vk.device.clone())) as Box<_>; let mut done = false; vk.events_loop.poll_events(|ev| { match ev { winit::Event::WindowEvent { event: winit::WindowEvent::CursorMoved { position: winit::dpi::LogicalPosition {x, y}, ..}, ..} if prev_mouse.is_none() => { prev_mouse = Some((x, y)); }, winit::Event::WindowEvent { event: winit::WindowEvent::CursorMoved { position: winit::dpi::LogicalPosition {x, y}, .. }, ..} => { //println!("MouseMoved {},{}", x, y); let prev = prev_mouse.unwrap(); if mouse_pressed[0] { arcball_camera.rotate(cgmath::Vector2::new(prev.0 as f32, prev.1 as f32), cgmath::Vector2::new(x as f32, y as f32)); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("rotate mat4: {:?}", arcball_camera_mat4); } else if mouse_pressed[1] { let mouse_delta = cgmath::Vector2::new((x - prev.0) as f32, -(y - prev.1) as f32); arcball_camera.pan(mouse_delta, 0.16); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("pan mat4: {:?}", arcball_camera_mat4); } prev_mouse = Some((x, y)); }, winit::Event::WindowEvent { event: winit::WindowEvent::MouseInput { state: _state, button: _button, ..}, ..} => { //println!("button {:?}", _button); if _button == winit::MouseButton::Left { mouse_pressed[0] = _state == winit::ElementState::Pressed; } else if _button == winit::MouseButton::Right { mouse_pressed[1] = _state == winit::ElementState::Pressed; } }, winit::Event::WindowEvent { event: winit::WindowEvent::MouseWheel { delta: winit::MouseScrollDelta::LineDelta(_, y), .. }, ..} => { //println!("ScrollDelta {}", y); arcball_camera.zoom(y, 0.1); arcball_camera_mat4 = arcball_camera.get_mat4().into(); //println!("zoom mat4: {:?}", arcball_camera_mat4); }, winit::Event::WindowEvent { event: winit::WindowEvent::CloseRequested, .. } => done = true, _ => () } }); if done { return; } } } fn window_size_dependent_setup( device: Arc<Device>, vs: &vs::Shader, fs: &fs::Shader, images: &[Arc<SwapchainImage<Window>>], render_pass: Arc<RenderPassAbstract + Send + Sync>, ) -> (Arc<GraphicsPipelineAbstract + Send + Sync>, Vec<Arc<FramebufferAbstract + Send + Sync>> ) { let dimensions = images[0].dimensions(); let depth_buffer = AttachmentImage::transient(device.clone(), dimensions, Format::D16Unorm).unwrap(); let framebuffers = images.iter().map(|image| { Arc::new( Framebuffer::start(render_pass.clone()) .add(image.clone()).unwrap() .add(depth_buffer.clone()).unwrap() .build().unwrap() ) as Arc<FramebufferAbstract + Send + Sync> }).collect::<Vec<_>>(); let pipeline = Arc::new(GraphicsPipeline::start() .vertex_input_single_buffer::<Vertex>() .vertex_shader(vs.main_entry_point(), ()) .triangle_list() .viewports_dynamic_scissors_irrelevant(1) .viewports(iter::once(Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0 .. 1.0, })) .fragment_shader(fs.main_entry_point(), ()) .depth_stencil_simple_depth() .render_pass(Subpass::from(render_pass.clone(), 0).unwrap()) .build(device.clone()) .unwrap()); (pipeline, framebuffers) } mod vs { vulkano_shaders::shader!{ ty: "vertex", src: " #version 450 layout(location = 0) in vec3 position; layout(location = 1) in vec2 tex_coords; layout(location = 0) out vec2 uv; layout(set = 0, binding = 0) uniform Data { mat4 proj; } uniforms; void main() { uv = tex_coords; gl_Position = uniforms.proj * vec4(position, 1.0); }" } } mod fs { vulkano_shaders::shader!{ ty: "fragment", src: " #version 450 layout(location = 0) in vec2 uv; layout(location = 0) out vec4 f_color; layout(set = 1, binding = 0) uniform sampler2D tex; void main() { f_color = texture(tex, uv); }" } }